Dušan Jelić, Geological Institute of Serbia, Belgrade

Branislav Trivić, Belgrade University - Faculty of Mining and Geology, Belgrade

OBJECTIVE

Palaoestress analysis based on conjugate shear zone pattern of Ravanica area

EXPECTED RESULTS

Determination of main kinematic events with its regimes and maximum stress orientation

METHODOLOGY

- •A straightforward solution to the problem of finding the stresses causing slip on a set of faults is to assign a simple shear stress state at each fault, with the intermediate principal stress lying in the fault plane perpendicular to the slip direction.
- •The local stress tensors then can be averaged together to give an estimate of the regional stress tensor.
- •The angle between the maximum principal stress and the fault plane can be varied to search for the minimum deviation between the faults in the set.

 $\sigma_1 \sigma_2 \sigma_3 =$ axis of stress calculated for the set of faults $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 =$ axis of stress measured in the field

$$\sigma' - \tau_k \rightarrow 0$$

GEOLOGICAL MAP OF CARPATHO-BALKANIDES by H.G.Kräutner & B.Krstić 1996

RESULTS

OBSERVATION POINT	PLANES/ LINEATIONS	PRINCIPAL STRESS DIRECTION MAXIMUM Q 1	PRINCIPAL STRESS DIRECTION INTERMEDIATE ©2	PRINCIPAL STRESS DIRECTION MINIMUM G 3	STRESS RATIO	REGIME	MEAN SHEAR STRESS ± STRESS DEVIATION	PRINCIPAL SHORTENING/ EXTENSION
108 R3	7/10	140/35	140/36	140/37	0.50	Strike-Slip	0.417 ± 0.001	84/19
111 R1	6/9	69/46	319/18	214/38	0.45	Normal Faulting	0.340 ± 0.016	49/3
112 R1	6/10	252/86	252/87	252/88	0.72	Normal Faulting	0.211 ± 0.002	343/20
117-118 R1	8/8	126/43	126/44	126/45	0.72	S.Slip-Normal F.	0.296 ± 0.0042	

FIRST DEFORMATION STAGE

Oldest deformation stage – app. 100 m.a. Austrian Stage of Early Alpine Orogenesis

Weakly exposed in the field

WSW – ENE oriented max. stress

65 measurements for Tensor calculation

Shortening with predominant eastward Nappe stacking

RESULTS

SECOND DEFORMATION STAGE

During Late Cretaceous (Turonian – end of Maastricht) – app. 90-65 m.a. Early Alpine Orogenesis

Extension with NNE – SSW orineted max. stress, with local stress distribution trending SW - NE and WNW - ESE

Strong regime of normal faulting and subordinate sinistral strike slip regime

179 measurements for Tensor calculation

CONCLUSION

- •Three main kinematic events
- •Estimated principal stresses, regimes and orientation
- •Estimated time of kinematic events

FUTURE INVESTIGATIONS

- •Palaeostress analysis of Čestobrodica, Gornjak, Kučevo, Golubac Areas (western rim of Carpatho-Balkanides)
- •Fission track analysis of investigated areas apsolute time of kinematic events
- •Palaeostress analysis combined with statistical analysis of brittle structures of the eastern rim of Carpatho-Balkanides, towards Timok fault